
11. NUMERICAL TECHNIQUES

Abstract — Sparse matrix-vector multiplication (SpMV) is
an essential kernel used in many scientific applications and
although it is parallelizable, it only reaches a small amount of
the attainable peak performance of the processor. As the core
count increases on a processor, using all cores to speedup
SpMV can be a major resources waste. This paper attempts to
understand the limitations of this kernel through quantifying
its performance and relating it to the processor's parameters.
This provides the basis for an appropriate resource mapping
on multi-core processors.

I. INTRODUCTION

 The SpMV is an essential kernel present in many
numerical computations. In particular, it is important for the
computational electromagnetics community, since it is an
essential building block of conjugate gradient (CG)
methods, which are used to solve a system of linear
equations.
 It is well known that matrix-vector multiplication
ݕ) ൌ ܣ ∗ exhibits a low floating point operations count to (ݔ
memory access ratio. In this paper, we attempt to evaluate
the performance of SpMV on any architecture, by relating
the hardware architecture parameters to the matrix
properties. Our first goal is to determine the optimal
number of threads to be used for a specific problem on a
specific processor. The second goal involves evaluating the
performance of SpMV in the presence of other running
methods and kernels on the remaining cores. These two
goals are based on our argument that, as the number of
cores increases, leveraging the power of a multi-core
processor would be a combination of running fine grained
parallel algorithms and other methods in an ad-hoc manner.
It is crucial to understand each kernel and to be able to form
a prediction of its behavior in the presence of other running
methods.

II. OVERVIEW

 Sparse matrix-vector multiplication is ubiquitous in many
scientific domains. There is a wide literature attempting to
optimize this kernel to a specific computer architecture. The
interest of this paper resides in running such a kernel on a
multi-core based processor.
 It is clear that matrix-vector multiplication, whether the
matrix is dense or sparse, is parallelizable, since many
operations can be performed simultaneously. Nevertheless,
the low attainable FLOPS is mainly due to a memory
bottleneck. The matrix ܣ presents a problem due to the
large number of memory operations with no data reuse.
 The peak performance attainable in sparse matrix-vector
multiplication is always less than that of a dense matrix of

similar size. This is mainly due to the following: First, a
more complex data storage structure is needed in order to
store the non-zeros, an example is Compressed Row
Storage (CRS)[1]; this will lead to indirect access to the
matrix	ܣ. Second, the non-zero pattern is unpredictable,
which could cause unpredictable access to the ݔ	and ݕ
vectors. Finally, for some matrices with low non-zero count
per row, the loop setup overhead would dominate the time
of the calculation and would not be able to be amortized
over the short calculation time of a few non-zeros. The
author in [2]has examined the extent of these effects and
found that the problems mentioned above vary greatly,
depending upon the problem and the processor’s
architecture.
 Further attempts to understand and optimize the
performance of the SpMV kernel on multi-core based
processors have been described in [3-4]. They have
identified many serial (e.g. register blocking, cache
blocking, etc.) optimization strategies and parallel
decomposition techniques and applied them on a set of test
matrices and different multi-core processor architectures.
The results have shown that the effect of an optimization
technique depends on the matrix and the platform. An
investigation of this variation has been carried out
qualitatively, that is by observing the particularity of those
matrices which provided high performance, low
performance, or discrepancy of performance amongst
different architectures.
 Despite the fact that the above mentioned techniques can
provide a performance gain, SpMV is still reaching only a
low percentage of the processor's theoretical peak
performance; for an Intel Clovertown processor, the
attainable peak performance has been less than 5% of the
theoretical peak[3]on average.

III. METHODOLOGY

 This paper attempts to obtain a quantitative estimation
of the performance of SpMV (serial and parallel) and to
further understand how this performance is altered when
SpMV runs as part of a CG solver, or when multiple
SpMV’s run simultaneously. As the number of processor
cores increases on a desktop computer, using the cores for
multiple tasks, as opposed to using all the cores for a
specific parallel kernel, would require resource mapping
and is a significant challenge.
 In the first set of experiments, the effect of cache misses
of the vector ݔ will be assessed in a way similar to that
performed in [2]. An efficient, non-optimized
implementation of SpMV will be compared to another

Architecture Independent Performance Evaluation of Sparse Matrix-Vector
Multiplication on Multi-Core Processors

Hussein Moghnieh and David A. Lowther
Department of Electrical and Computer Engineering, McGill University

3480 University Street, Montreal, Quebec, H3A 2A7, Canada
hussein.moghnieh@mail.mcgill.ca, david.lowther@mcgill.ca

11. NUMERICAL TECHNIQUES

version which does not multiply by ݔ, but rather by a fixed
value, thus removing the cache misses. Of course, the result
of the latter routine is not correct. The runtime ratio has
been obtained for experimental runs using a set of matrices
as shown in Fig.1(Experimental). This ratio shows the
magnitude of the effect of the cache misses on	ݔ.

In order to analytically understand such an effect, a
distance model has been developed that takes into account
the cache line size of the processor used (Intel Quad core
Q6600-8 MB L2 - 2.4 GHz). The vector which contains the
column CRS format (which contains the column ݔ indices),
is analyzed to determine where each jump in the array that
is larger than the cache line size will occur and this will
count as a cache miss. The total number of cache misses are
obtained and divided by the number of the non-zeros of the
matrix. The result is plotted in Fig.1Fig.1(Analytical). This
figure shows that the magnitude of the effect of cache
misses can be predicted by looking at the access pattern of
the ݔvector.

Fig.1. Cache miss effect using the distance model

IV. PARALLEL SPMV

 A parallel SpMV has been applied to two sets of
matrices obtained from [5]. The first set has a storage size
in CRS format ranging between 10 MB and 100MB (Fig.2),
the latter have a storage size in CRS format larger than
500MB (Fig.3). In the parallel SPVM used, the matrix is
divided into blocks of rows where each block is assigned to
a thread. By using this non-optimized version of parallel
SpMV, the magnitude of the effect of cache misses could
be related to the matrix's and processor's properties in order
to know which optimization techniques to use and what
number of threads to utilize.
 The preliminary results show that for matrices less than
100MB, a speedup gain could be obtained for a number of
threads larger than the number of available cores (although
the processor used does not support hyper-threading), while
this was not true for large matrices where using 2 threads
was the optimal choice.

V. CONCLUSION

 The SpMV exhibits different performance behavior as
the number of threads increases. By using a non-optimized

parallel SpMV and analyzing the memory access patterns,
the effect of the available tuning techniques can be
predicted. This will be the main work of the extended
version of this paper, i.e. to understand the limitation of
SpMV and the optimal number of threads to use. This
information will form the basis of algorithms and allocation
techniques which will lead to a more effective utilization of
the multi-core processor.

Fig.2. Matrices from electromagnetics problems (CRS storage < 100MB)

Fig.3. Miscellaneous Matrices (CRS storage > 500 MB)

VI. REFERENCES

[1] R. Barrett, "Templates for the solution of linear systems:
building blocks for iterative methods," ed: Society for
Industrial Mathematics, 1994, pp. 63-65.

[2] G. Goumas, et al., "Understanding the performance of sparse
matrix-vector multiplication," in Proceedings of the 16th
Euromicro Conference on Parallel, Distributed and Network-
Based Processing, PDP 2008, 2008, pp. 283-292.

[3] S. Williams, et al., "Optimization of sparse matrix–vector
multiplication on emerging multicore platforms," Parallel
Computing, vol. 35, pp. 178-194, 2009.

[4] R. Vuduc, et al., "OSKI: A library of automatically tuned
sparse matrix kernels," Journal of Physics: Conference Series,
vol. 16, pp. 521-530, 2005.

[5] University of Florida sparse matrix collection , December 2010
[Online]. Available: www.cise.ufl.edu/research/sparse/matrices

Circuit ins2 roadnet shipsec ecology cage15 nlp
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7
 Experimental
 Analytical

E
ff

ec
t o

f
ca

ch
e

m
is

s
in

 X
 (

 y
 =

 A
 *

 x
)

Matrix

1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

G
LO

P
F

S

Number of threads

 cubesspher femcircuit fp offshore t2em

1 2 3 4 5 6 7 8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

G
F

LO
P

S

Number of threads

 cage15 nlp afshell10 audikw circuit5M

